Step of Proof: exists_functionality_wrt_iff
12,41
postcript
pdf
Inference at
*
2
I
of proof for Lemma
exists
functionality
wrt
iff
:
1.
S
: Type
2.
T
: Type
3.
P
:
S
4.
Q
:
S
5.
S
=
T
6.
x
:
S
.
P
(
x
)
Q
(
x
)
7.
y
:
T
.
Q
(
y
)
x
:
S
.
P
(
x
)
latex
by
InteriorProof
((((((D 7)
CollapseTHEN (With
y
(D 0)))
)
CollapseTHENM (HypBackchain))
)
CollapseTHENM (HypB
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
CollapseTHENM (Hyp
)) (first_tok :t) inil_term)))
latex
C
.
Definitions
x
:
A
.
B
(
x
)
,
t
T
,
x
(
s
)
,
P
Q
,
P
Q
,
P
&
Q
,
P
Q
,
x
:
A
.
B
(
x
)
,
origin